カーボンニュートラル社会の実現

基本的な考え方

当社は、日本政府が宣言した「2050年カーボンニュート ラル」の実現に貢献していくため、建設現場から排出される CO2削減への取り組みのほか、再生エネルギー事業の切り 札とされる洋上風力発電事業やビルやマンション等の新築 建物のZEB化、既存建物の省エネ化提案等の取り組みを進 めています。洋上風力発電事業やZEBは当社の成長戦略 分野としており、カーボンニュートラル社会の実現を通じて 企業価値の向上を図っていきます。

洋上風力発雷施設建設の推進

我が国の洋上風力発電事業は、港湾区域の洋上風力発 電事業において本格的な工事が始まる等、着実に事業が進 められています。その一方で、国内では外洋作業に適応した 作業船の不足が指摘されているほか、洋上風力発電の先進 地域である欧州と異なり、日本沿岸は水深が深く、また比較 的地盤の浅い場所に岩盤が存在することから、建設コストが 高くなるという懸念があります。

このような我が国特有の事情に対応するために当社が 行っている取り組みをご紹介します。

● 株式会社商船三井との作業船協業

当社と株式会社商船三井(以下「商船三井」)は、洋上風力 発電関連作業船の協業検討を開始しています。海洋工事の 豊富な知見と洋上風力の技術開発力を有する当社と、船舶 の建造、保有、運航における豊富な実績を持つ商船三井が シナジー効果を発揮することで、洋上風力発電事業におけ る作業船需要に応え、さらなる洋上風力発電事業への貢献 を目指しています。

協業節囲のイメージ

● ケーブル敷設船の建造

当社は、国内最大級の自航 式ケーブル敷設船を建造する こととしました。この船は海底 ケーブルの敷設に加え、洋上風 力発電施設建設に必要な様々 な外洋作業に適応できるもの で、2025年度の完成、2027 年度の工事投入を目指して建 造を進めています。

ケーブル敷設船のイメージ

外洋作業のイメージ

● 着床式基礎工法(サクションバケット)の開発

当社は、着床式基礎の低コスト化を実現できるサクション バケット基礎の施工技術実証に取り組んでいます。サクショ ンバケット工法は、バケット内の海水を排水させることで地 中に貫入させる工法です。日本の地盤に適した工法であり 洋上風力発電施設の適地拡大に貢献できること、施工中の 騒音振動が皆無で環境面に優れていること、大型の作業船 や施工機械を必要とせず低コスト化に寄与できること、確実 に撤去が可能であるといった特徴があります。

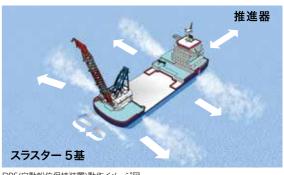
当社の鳴尾研究所での様々な室内実験を経て、2021年 度にモノバケットの実海域実証実験を行い、サクション技術 の施工性を確立することができました。2022年度は、今後 の風車大型化への対応を見据え、バケットを3つつなげたマ ルチバケットの実証実験を行うなど、2026年度の商用化・ 実用化に向けて着実に取り組みを進めています。

当社鳴尾研究所での室内実験(2020年度)

モノバケット実海域実験(2021年度)

マルチバケット実海域実験(2022年度)

● 浮体式係留方式 (TLP方式) の開発


当社はグリーンイノベーション基金事業(NEDO事業)に おいて、「TLP方式による浮体式洋上風力発電低コスト化技 術検証事業」に取り組んでいます。着床式の風車は、水深の 浅いエリアに設置場所が限られており、日本においては、陸 から離れた深い水深海域に設置可能な浮体式洋上風力の 実用化が強く求められています。また、TLP方式は他の浮体 形式に比べて海域の占有面積が小さく社会受容性に優れて おり、また浮体動揺が少なく風車の故障リスク低減が期待さ れている方式であり、2030年代初頭での実用化を念頭に 開発を進めています。

TIP方式の概略図 (三井海洋開発株式会社提供)

● AUGUST EXPLORERの洋上風力発電事業への活用

洋上風力発電施設は、今後風況の良い外洋に建設される ことになりますが、そのような場所は海象条件が厳しく、工 事に使用される作業船の稼働率は低下します。当社は吊荷 上下動低減装置(AHC-RMP)を自航式多目的船「AUGUST EXPLORER」に搭載し、稼働率を上げることで工程短縮とコ ストダウンを実現します。また、同船の定点保持装置を世界 標準であるClass-Bへグレードアップし、より高い施工能力、 システムの確実性、優れた安全性能を備えることで洋上風 力発電施設建設事業に参画していきます。

DPS(自動船位保持装置)動作イメージ図

洋上風力関連のプレスリリース https://www.toyo-const.co.jp/topics/technicalnews

43 東洋建設CORPORATE REPORT 2022

東洋建設グループについて 東洋建設グループの成長戦略 成長戦略を支える基盤

マテリアルフロー

基本的な考え方

建設事業では、資材やエネルギーが投入され、建物や構 造物(社会に創出された価値)を産み出します。一方、事業 活動に伴いCO2や建設副産物等が排出されることになる ので、これらの排出量を適切・的確に把握することが重要と なります。

当社は、低炭素社会の実現やサーキュラーエコノミーに 貢献していくため、温室効果ガスや建設副産物排出量の削 減・リサイクル率の向上を目指します。

					投入	\ 資源
			海上土木	陸上土木	建築	合計
エネルギー	電力*	(万kWh)	62	114	219	395
	軽油*	(kl)	1,840	4,094	1,245	7,180
	重油*	(kl)	13,114	0	0	13,114
	灯油*	(kl)	5	3	7	17

				内、再生資材
資材	生コン	(千m³)	177,716	(9,356)
	アス・コン	(千t)	18,921	(13,163)
	鉄筋	(千t)	18,674	(18,674)
	砕石	(千m³)	446,970	(67,381)
	土砂	(千m³)	701,376	(135,012)

		社会に創出さ
522億円	道路	48億円
120/空田	外当	27/座□

土木	港湾•空港	522億円	道路	48億円
	治山·治水	128億円	鉄道	27億円
	土地造成	105億円	上下水道	15億円
	エネルギー関係	57億円	その他	40億円

九以上于同/						
	倉庫·流通	132億円	住宅	37億円		
建築	工場·発電所	95億円	教育·文化·研究	22億円		
连来	特殊施設	55億円	宿泊施設	16億円		
	事務所•庁所	52億円	その他	16億円		

建設副産物排出量

建設発生土

53,229t

33.223t

2.480t

コンクリート塊

建設発生木材

建設汚泥

CO₂総排出量 (単位: t-CO ₂)*							
	海上土木 陸上土木 建築 合計						
SCOPE1	40,943	10,745	3,285	54,973			
SCOPE2	272	501	962	1,735			
合計	41,215	11,246	4,247	56,708			

SCOPE2	272	501	962	1,7
合計	41,215	11,246	4,247	56,7

3,881t 建設発生土 125,849m³

※ サンプリング調査をもとに原単価を算出し、完成工事高を乗じて算出しています 96.7

再資源化量				
コンクリート塊	53,057 t	指定副産物以外廃棄物	17,503t	
建設汚泥	33,088 t	アスファルトコンクリート塊	9,307t	
建設発生木材	2,426t	建設発生土	1,333,302m ³	

指定副産物以外廃棄物

アスファルトコンクリート塊

20.993t

9,337t

1,459,151m³

事業活動から排出されるCO。の削減

当社は、事業活動から排出されるCO2の削減に取り組ん でいます。また、当社設計施工の建物の運用時に排出される CO2の削減にも取り組んでいます。

建設現場でのCO2削減に向けた取り組みとしては、ハイブ リッド型や電動型の重機の採用、建設機械等の省エネ運転・ アイドリングストップの励行、作業所への太陽光パネル設置 等を実施しています。また、当社グループはマリンコンストラ クターとして多数の作業船を保有しており、特に大型作業船 はA重油を燃料として使用しています。

これまでに、燃費を向上させるための環境配慮型エンジン への換装や油圧駆動の部分電動化、蓄電システムの導入、 A重油から軽油への転換等に取り組んできましたが、さらな るCO₂排出量の削減を目指し、バイオ燃料やGTL*1への転 換やエンジンのDF(デュアルフューエル)化の検討を進めて います。なお、当社のCO2排出量削減率目標は、2020年度 まで(一社)日本建設業連合会(以下「日建連」)目標値として いましたが、2021年度は日建連が同年4月に策定した「建 設業の環境自主行動計画 第7版 2021-2025年度**2 lを参 考として設定しました。

また、2022年度は独自のCO2排出量削減目標として 2013年度比40%以上の削減、2030年度の中期目標とし て同45%以上の削減を目指すこととしました。

- ※1 GTL:Gas to Liquidsの略称。天然ガス由来の製品
- ※2 建設業の環境自主行動計画 第7版 2021-2025年度:施工段階におけるCO2の発生 抑制において、CO2排出量原単位を2030~2040年度の早い時期に40%削減を目

完成工事高1億円当たりのCO2排出量の推移

CO2排出量削減率目標と実績の推移

TCFD提言への取り組みについて

当社は、マテリアリティとして「カーボンニュートラル社会 の実現」を掲げ取り組みを進めており、「気候関連財務情 報開示タスクフォース(TCFD:Task Force on Climaterelated Financial Disclosures) |提言についての検討も

進めています。

本レポートでは、検討が進んでいるシナリオ分析*の結果 等をご報告いたします。

ガバナンス

サステナビリティ活動を推進する組織である「サステナビ リティ委員会 | において、気候変動対応を含むサステナビリ ティに係る活動方針案等を審議します。

また、活動実績等をレビューし、取締役会に報告することに しています。

●戦略

建設産業は、建物や構造物の建設に際し、鉄やセメントと いった、製造時に多量のCO2が排出される材料を使用しま す。また、当社グループが得意とする海上土木工事ではA重 油等を燃料とする作業船を使用するので、陸上十木丁事や 建築工事に比べてCO₂排出量が多くなるという特徴があり

このような背景のもと、当社はTCFD提言に基づき政策や 市場動向の移行(移行リスク・機会)に関する分析と、災害等 の物理的変化(物理的リスク・機会)に関する分析を行ってい るところであり、2022年度中に推奨される開示内容を充足 させる予定です。

** 分析に使用したシナリオは、「移行シナリオ」が1.5℃シナリオ、「物理的シナリオ」は4.0℃ シナリオを採用しています 1.5℃シナリオ

国際気候変動に関する政府間パネル(IPCC)が策定したシナリオのうち 産業革命前に 比べて21世紀末の気温上昇を1.5℃以下に抑えるシナリオ(RCP1.9)

IPCCが策定したシナリオのうち、産業革命前に比べて21世紀末の気温上昇が4.0℃を 超えるシナリオ(RCP8.5)

分	₹ Z	環境の変化		事業への影響度		対応策
刀規			泉境V/支化	1.5℃	4.0℃	AJIIUDR
政策や	炭素税の導入 CO2排出抑制の強化		●炭素税が建設資機材価格に付加され、建設コストが増加	大	小	建設機械、作業船の脱炭素化の推進低炭素型資材の利用
市場動向		この2分に1分中的10分割し	•建設コスト増により民間建設投資が減少			
の移行	機会	再エネ・省エネ関連の	•洋上風力発電施設への建設投資が拡大	大	//\	洋上風力発電施設建設事業への参画
	恢茲	建設需要拡大	ZEB・ZEHの基準をクリアする建築需要が増加	^	١, ١,	ZEB案件の取り組み推進
	気温上昇による	熱中症等による健康被害の増加			•快適な職場環境づくりの推進	
			• 労働環境悪化による生産性低下、技能労働者不足の深	中	大	•現場省力化の実現に向けた技術・研究開発の
災害等	建設現場の労働環境悪化 等 リスク		刻化			推進
の物理的		地球温暖化に起因する	•異常気象によるサプライチェーンや自社施設、建設現場	ф	у	●BCP体制の構築
変化	自然災害の激甚化		への被害発生リスクが増大	4		一
	機会	国土強靭化	●防災・減災、国土強靭化施策等、インフラ整備工事の増加	大	大	●防災・減災、災害復旧時に貢献する技術・研究 開発の推進

※現時点での分析結果であり、今後の検討状況によって変更となる可能性があります